nif.demo
- class nif.demo.TravelingWave
Bases:
PointWiseData
A class for loading and processing the traveling wave dataset.
Inherits from the PointWiseData class, which is a base class for point-wise data processing.
- Variables:
mean (ndarray) – Mean values of the normalized data.
std (ndarray) – Standard deviation values of the normalized data.
- class nif.demo.TravelingWaveHighFreq
Bases:
PointWiseData
A class for loading and normalizing the traveling wave high frequency dataset.
- Variables:
n_p (int) – The number of parameters.
n_x (int) – The number of input features.
n_o (int) – The number of output targets.
- __init__()
Initializes the class and loads the dataset.
- standard_normalize(raw_data, area_weighted=False)
Normalizes the given data using standard normalization.
- minmax_normalize(raw_data, n_para, n_x, n_target, area_weighted=False)
Normalizes the given data using min-max normalization.
- class nif.demo.CylinderFlow
Bases:
PointWiseData
A class representing the cylinder flow dataset.
Inherits from the PointWiseData class.
Attributes: - data (numpy.ndarray): A numpy array containing the normalized data. - mean (numpy.ndarray): A numpy array containing the mean values used for normalization. - std (numpy.ndarray): A numpy array containing the standard deviation values used for normalization. - sample_weight (numpy.ndarray): A numpy array containing the weights assigned to each data sample. - n_p (int): The number of parameters in the data. - n_x (int): The number of inputs (features) in the data. - n_o (int): The number of outputs (targets) in the data.